A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes

نویسندگان

  • M. Eigel
  • MARTIN EIGEL
چکیده

We analyze a-posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A residual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges, and to this end we establish a contraction property satisfied by its iterates. It is shown that the sequences of triangulations which are produced by the algorithm in the FE dis-cretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method

We analyze an adaptive discontinuous finite element method (ADFEM) for symmetric second order linear elliptic operators. The method is formulated on nonconforming meshes made of simplices or quadrilaterals, with any polynomial degree and in any dimension ≥ 2. We prove that the ADFEM is a contraction for the sum of the energy error and the scaled error estimator, between two consecutive adaptive...

متن کامل

Nonconforming H-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations

Based on H-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of fini...

متن کامل

Adaptive Finite Element Simulation of Incompressible Flows by Hybrid Continuous-Discontinuous Galerkin Formulations

In this work we design hybrid continuous-discontinuous finite element spaces that permit discontinuities on non-matching element interfaces of non-conforming meshes. Then, we develop an equal-order stabilized finite element formulation for incompressible flows over these hybrid spaces, which combines the element interior stabilization of SUPGtype continuous Galerkin formulations and the jump st...

متن کامل

Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs

We analyze the discontinuous Galerkin method in time combined with a finite element method with symmetric stabilization in space to approximate evolution problems with a linear, first-order differential operator. A unified analysis is presented for space discretization, including the discontinuous Galerkin method and H-conforming finite elements with interior penalty on gradient jumps. Our main...

متن کامل

Adaptive Galerkin Finite Element Methods for the Wave Equation

This paper gives an overview of adaptive discretization methods for linear second-order hyperbolic problems such as the acoustic or the elastic wave equation. The emphasis is on Galerkin-type methods for spatial as well as temporal discretization, which also include variants of the Crank-Nicolson and the Newmark finite difference schemes. The adaptive choice of space and time meshes follows the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014